본문 바로가기

개발일지2

다중 감성(multi-class sentiment) 분류 모델 개발일지 - 2 2019-03-17-multi-sent-2 지난 주에 자모에 대해 Fasttext를 이용하여 Embedding 하는것을 고려했었다. 그러나 Labeling에 대한 문제 해결이 우선이었기 때문에 이 방법에 대한 고려는 뒤로 미루기로 했다.데이터 라벨링일단 데이터는 Tweet 데이터를 사용하기로 결정했었다. 찬찬히 tweet들을 살펴본 결과 하나의 아이디어가 생각났다. 저번에 tweet에 어떠한 이모티콘이 있으면 그 감정으로 Labeling하는 논문이 있었는데 한국 tweet은 이모티콘을 많이 쓰지 않아 적용하기 어려울 것이라 생각했었다. 그러나 이모티콘으로 검색이 된다면 해당 이모티콘을 사용한 tweet을 많이 뽑아낼 수 있다는 생각을 했다. 어떻게 보면 당연한 이야긴데 깊게 생각하지 못 했던 것 같다. .. 2019. 3. 17.
다중 감성(multi-class sentiment) 분류 모델 개발일지 - 1 2019-03-08-multi-sent-1 목차개발 목표진행 상황추후 계획 및 아이디어 개발 목표주로 감정 분석(sentiment analysis)은 긍부정 형식으로 양극(polar)의 형태로 분류를 하는 경우가 대부분이다. 하지만 감정을 긍정과 부정만으로 나누기에는 한계점이 많다. 예를 들면, 슬픈 영화에 대한 댓글 중 "너무 슬퍼 ㅠㅠ", "영화 보는 내내 자꾸 눈물이 흘렀어요 ㅠㅠ" 와 같은 댓글이 있다고 하자. 이 댓글들은 당연히 부정으로 분류될 것이다. 그러나 슬픈 영화인 것을 감안하면 슬프다는 의미는 곧 칭찬이며 이 영화에 대해 긍정적인 평가를 하고 있다는 것을 알 수 있다. 그렇기 때문에 특정 한글 텍스트에 대해 여러 가지 감정으로 분류하고, 추가적으로 분류된 감정에 맞는 이모지(Emoji).. 2019. 3. 9.